5,914 research outputs found

    Phase diagram and phonon-induced backscattering in topological insulator nanowires

    Get PDF
    We present an effective low-energy theory of electron-phonon coupling effects for clean cylindrical topological insulator nanowires. Acoustic phonons are modelled by isotropic elastic continuum theory with stress-free boundary conditions. We take into account the deformation potential coupling between phonons and helical surface Dirac fermions, and also include electron-electron interactions within the bosonization approach. For half-integer values of the magnetic flux ΦB\Phi_B along the wire, the low-energy theory admits an exact solution since a topological protection mechanism then rules out phonon-induced 2kF2k_F-backscattering processes. We determine the zero-temperature phase diagram and identify a regime dominated by superconducting pairing of surface states. As example, we consider the phase diagram of HgTe nanowires. We also determine the phonon-induced electrical resistivity, where we find a quadratic dependence on the flux deviation δΦB\delta\Phi_B from the nearest half-integer value

    Fidelity and visibility reduction in Majorana qubits by entanglement with environmental modes

    Get PDF
    We study the dynamics and readout of topological qubits encoded by zero-energy Majorana bound states in a topological superconductor. We take into account bosonic modes due to the electromagnetic environment which couple the Majorana manifold to above-gap continuum quasi-particles. This coupling causes the degenerate ground state of the topological superconductor to be dressed in a polaron-like manner by quasi-particle states and bosons, and the system to become gapless. Topological protection and hence full coherence is only maintained if the qubit is operated and read out within the low-energy spectrum of the dressed states. We discuss reduction of fidelity and/or visibility if this condition is violated by a quantum-dot readout that couples to the bare (undressed) Majorana modes. For a projective measurement of the bare Majorana basis, we formulate a Bloch-Redfield approach that is valid for weak Majorana-environment coupling and takes into account constraints imposed by fermion-number-parity conservation. Within the Markovian approximation, our results essentially confirm earlier theories of finite-temperature decoherence based on Fermi's golden rule. However, the full non-Markovian dynamics reveals, in addition, the fidelity reduction by a projective measurement. Using a spinless nanowire model with pp-wave pairing, we provide quantitative results characterizing these effects.Comment: 18 pages, 10 figure

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    Paraconductivity in Carbon Nanotubes

    Full text link
    We report the calculation of paraconductivity in carbon nanotubes above the superconducting transition temperature. The complex behavior of paraconductivity depending upon the tube radius, temperature and magnetic field strength is analyzed. The results are qualitatively compared with recent experimental observations in carbon nanotubes of an inherent transition to the superconducting state and pronounced thermodynamic fluctuations above TcT_{c}. The application of our results to single-wall and multi-wall carbon nanotubes as well as ropes of nanotubes is discussed.Comment: 7 pages, 1 figur
    • …
    corecore